(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

f(f(y, z), f(x, f(a, x))) → f(f(f(a, z), f(x, a)), f(a, y))

Rewrite Strategy: INNERMOST

(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)

Converted CpxTRS to CDT

(2) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(f(z0, z1), f(z2, f(a, z2))) → f(f(f(a, z1), f(z2, a)), f(a, z0))
Tuples:

F(f(z0, z1), f(z2, f(a, z2))) → c(F(f(f(a, z1), f(z2, a)), f(a, z0)), F(f(a, z1), f(z2, a)), F(a, z1), F(z2, a), F(a, z0))
S tuples:

F(f(z0, z1), f(z2, f(a, z2))) → c(F(f(f(a, z1), f(z2, a)), f(a, z0)), F(f(a, z1), f(z2, a)), F(a, z1), F(z2, a), F(a, z0))
K tuples:none
Defined Rule Symbols:

f

Defined Pair Symbols:

F

Compound Symbols:

c

(3) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Use narrowing to replace F(f(z0, z1), f(z2, f(a, z2))) → c(F(f(f(a, z1), f(z2, a)), f(a, z0)), F(f(a, z1), f(z2, a)), F(a, z1), F(z2, a), F(a, z0)) by

F(f(x0, x1), f(x2, f(a, x2))) → c(F(f(f(a, x1), f(x2, a)), f(a, x0)))

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(f(z0, z1), f(z2, f(a, z2))) → f(f(f(a, z1), f(z2, a)), f(a, z0))
Tuples:

F(f(x0, x1), f(x2, f(a, x2))) → c(F(f(f(a, x1), f(x2, a)), f(a, x0)))
S tuples:

F(f(x0, x1), f(x2, f(a, x2))) → c(F(f(f(a, x1), f(x2, a)), f(a, x0)))
K tuples:none
Defined Rule Symbols:

f

Defined Pair Symbols:

F

Compound Symbols:

c

(5) CdtInstantiationProof (BOTH BOUNDS(ID, ID) transformation)

Use instantiation to replace F(f(x0, x1), f(x2, f(a, x2))) → c(F(f(f(a, x1), f(x2, a)), f(a, x0))) by

F(f(f(a, x1), f(x2, a)), f(a, f(a, a))) → c(F(f(f(a, f(x2, a)), f(a, a)), f(a, f(a, x1))))

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(f(z0, z1), f(z2, f(a, z2))) → f(f(f(a, z1), f(z2, a)), f(a, z0))
Tuples:

F(f(f(a, x1), f(x2, a)), f(a, f(a, a))) → c(F(f(f(a, f(x2, a)), f(a, a)), f(a, f(a, x1))))
S tuples:

F(f(f(a, x1), f(x2, a)), f(a, f(a, a))) → c(F(f(f(a, f(x2, a)), f(a, a)), f(a, f(a, x1))))
K tuples:none
Defined Rule Symbols:

f

Defined Pair Symbols:

F

Compound Symbols:

c

(7) CdtInstantiationProof (BOTH BOUNDS(ID, ID) transformation)

Use instantiation to replace F(f(f(a, x1), f(x2, a)), f(a, f(a, a))) → c(F(f(f(a, f(x2, a)), f(a, a)), f(a, f(a, x1)))) by

F(f(f(a, f(x1, a)), f(a, a)), f(a, f(a, a))) → c(F(f(f(a, f(a, a)), f(a, a)), f(a, f(a, f(x1, a)))))

(8) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(f(z0, z1), f(z2, f(a, z2))) → f(f(f(a, z1), f(z2, a)), f(a, z0))
Tuples:

F(f(f(a, f(x1, a)), f(a, a)), f(a, f(a, a))) → c(F(f(f(a, f(a, a)), f(a, a)), f(a, f(a, f(x1, a)))))
S tuples:

F(f(f(a, f(x1, a)), f(a, a)), f(a, f(a, a))) → c(F(f(f(a, f(a, a)), f(a, a)), f(a, f(a, f(x1, a)))))
K tuples:none
Defined Rule Symbols:

f

Defined Pair Symbols:

F

Compound Symbols:

c

(9) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)

Removed 1 trailing nodes:

F(f(f(a, f(x1, a)), f(a, a)), f(a, f(a, a))) → c(F(f(f(a, f(a, a)), f(a, a)), f(a, f(a, f(x1, a)))))

(10) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(f(z0, z1), f(z2, f(a, z2))) → f(f(f(a, z1), f(z2, a)), f(a, z0))
Tuples:none
S tuples:none
K tuples:none
Defined Rule Symbols:

f

Defined Pair Symbols:none

Compound Symbols:none

(11) SIsEmptyProof (EQUIVALENT transformation)

The set S is empty

(12) BOUNDS(O(1), O(1))